Interaction between gonadotropin-releasing hormone and bone morphogenetic protein-6 and -7 signaling in LβT2 gonadotrope cells.
نویسندگان
چکیده
It is known that bone morphogenetic proteins (BMPs) regulate gonadotropin transcription and production by pituitary gonadotrope cells. However, the role of BMPs in gonadotropin-releasing hormone (GnRH)-induced FSH production remains uncertain. Here, we describe a functional link between BMP-6 and BMP-7 signals and FSH transcriptional activity induced by GnRH using mouse gonadotrope LβT2 cells. In LβT2 cells, BMP-6 and BMP-7 increased mouse FSHβ-promoter activity in a concentration-dependent manner. The induction by BMP-6 and BMP-7 was inhibited by treatment with extracellular domains of ActRII but not BMPRII. These findings suggest that the type II receptor ActRII participates in BMP-induced FSHβ transcription regulation. Notably, BMP-6, but not BMP-7, enhanced GnRH-induced FSHβ-promoter activity in LβT2 cells. Since GnRH stimulated MAPK phosphorylation in LβT2 cells, a functional link between MAPK and FSHβ transcription was examined. Inhibition of the ERK pathway, but not that of p38 or SAPK/JNK signaling, suppressed GnRH-induced FSHβ transcription, suggesting that ERK is functionally involved in GnRH-induced FSHβ transcription. Co-treatment with BMP-7, but not with BMP-6, suppressed GnRH-induced MAPK phosphorylation in LβT2 cells. Thus, the difference between BMP-6 and BMP-7 in enhancing GnRH-induced FSHβ transcription may be due to the differential effects of BMP ligands on GnRH-induced ERK signaling. On the other hand, GnRH reduced Smad1/5/8 phosphorylation but increased Smad6/7 expression. These findings imply the presence of a functional link between GnRH action, MAPK signaling and the BMP system in pituitary gonadotropes for fine-tuning of FSH gene expression.
منابع مشابه
Annexin A1 is a novel target gene of gonadotropin-releasing hormone in LβT2 gonadotrope cells
Gonadotropin-releasing hormone (GnRH) regulates gonadotropin secretion. We previously demonstrated that the expression of annexin A5 (ANXA5) is stimulated by GnRH in gonadotropes and has a significant role in gonadotropin secretion. It is therefore of interest to know whether other members of the ANXA family, which consists of twelve structurally related members, are also regulated by GnRH. The...
متن کاملG proteins and autocrine signaling differentially regulate gonadotropin subunit expression in pituitary gonadotrope.
Gonadotropin-releasing hormone (GnRH) acts at gonadotropes to direct the synthesis of the gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH). The frequency of GnRH pulses determines the pattern of gonadotropin synthesis. Several hypotheses for how the gonadotrope decodes GnRH frequency to regulate gonadotropin subunit genes differentially have been proposed. However...
متن کاملGonadotropin-inhibitory hormone inhibits GnRH-induced gonadotropin subunit gene transcriptions by inhibiting AC/cAMP/PKA-dependent ERK pathway in LβT2 cells.
A neuropeptide that directly inhibits gonadotropin secretion from the pituitary was discovered in quail and named gonadotropin-inhibitory hormone (GnIH). The presence and functional roles of GnIH orthologs, RF-amide-related peptides (RFRP), that possess a common C-terminal LPXRF-amide (X = L or Q) motif have also been demonstrated in mammals. GnIH orthologs inhibit gonadotropin synthesis and re...
متن کاملRegulatory Architecture of the LβT2 Gonadotrope Cell Underlying the Response to Gonadotropin-Releasing Hormone
The LβT2 mouse pituitary cell line has many characteristics of a mature gonadotrope and is a widely used model system for studying the developmental processes and the response to gonadotropin-releasing hormone (GnRH). The global epigenetic landscape, which contributes to cell-specific gene regulatory mechanisms, and the single-cell transcriptome response variation of LβT2 cells have not been pr...
متن کاملModulation of gonadotropin-releasing hormone-induced extracellular signal-regulated kinase activation by dual-specificity protein phosphatase 1 in LbetaT2 gonadotropes.
As the regulator of pituitary reproductive hormone synthesis, the hypothalamic neuropeptide GnRH is the central regulator of reproduction. A hallmark of GnRH action is the differential control of gene expression in pituitary gonadotropes through varied pulsatile stimulation. Among other signaling events, GnRH activation of the ERK family of MAPKs plays a significant role in the transcriptional ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular endocrinology
دوره 348 1 شماره
صفحات -
تاریخ انتشار 2012